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THE BOUNDARY LAYER IN THE FLOW OF A PLASTIC 
MEDIUM NEAR A ROUGH SURFACE* 

L.M. FLITM?Q.' 

High-speed flow of an incompressible plastic medium past a rigid rough 
surface with slippage along it is investigated. It is assumed that the 
ratio of the yield point of the medium to the dynamic pressure in the 
flow is small. An asymptotic representation of the solution is constructed, 
based on the assumption due to Lavrent'ev that inthe case of flows with 
such properties the principal parts of the velocity and stress fields are 
represented by the corresponding fields of an ideal fluid. Equations are 
obtained describing the flow in the boundary layer. Group-theoretic analysis 
is usedtofind their solution for flows past wedges and cones. The thickness 
of the boundary layer is estimated. 

1. Let us consider the high-speed flow of an incompressible plastic medium past a fixed 
impermeable surface, with the particles slipping along the surface. The stresses in the 
medium satisfy the Mises plasticity condition with constant k /I/. We assume that 

.i=jrh(pc?)<l (1.1) 

where p is the density of the medium and c is the characteristic velocity of the flow. Condition 
(1.1) means that the level of the stress deviator is small compared with the dynamic pressure 
of the flow. The condition can be satisfiedin the flows possessing high deformation rates. 
It can be expected, by virtue of (1.11, that the velocity of stress fields will differ little 
from the corresponding fieldsinthe analogous problem for a perfect fluid. 

The perfect fluid model was widely used in /2/ in calculating the rigid, intensely 
deformed materials. In some cases, however, it is useful to know the magnitude of the 
correction related to the density of the medium. The problem was studied earlier in /3/ for 
several specific cases. In /4/ expansions of the velocity and stress fields over short 
distances from the boundary were constructed for the slow flows f = co:. The boundary layer 
in a viscoplastic medium was studied in /S--7/ assuming that no slippage of the particles along 
the boundary took place. 

Below, using the results of /3/, we obtain equations describing the flow in the boundary 
layer, differing appreciably from the corresponding equations for viscous flow and /5-7/and 
use them as the starting concepts. Group-theoretic analysis methods /8/ are used to obtain 
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accurate, boundary layer-type solutions l (*Flitman L.M., On the boundary layer in certain 
problems of the dynamics of a plastic medium. Preprint In-ta problem mekhaniki Akad. Nauk 
SSSH, Moscow, No.150, 1980). 

Let us introduce an Eulerian, curvilinear (s',z*,I")-coordinate system attached to the 
surface S past which the flow takes place, the latter representing the coordinate plane x3= Cl. 
Let (z',z*) form a mesh on S, let the lines 9 be orthogonal to it, and let the coordinate 3J 
be equal to the arc length between the observer point and S. We take, as the scale of velocity, 
u = (a', u?, US), pressure p, stress deviator T = IIz’jII and time t, the characteristic flow 
velocity c, the dynamic pressure pc2, and the plasticity constant k; llc(1 is the unit of length). 
Then the equation of conservation of mass and momentum will be 

div u = 0, duldt = -grad p + f dir T (1.2) 

We shall assume that the medium is in the plastic state near the surface S, and is 
described by the Mises-Levi Eqs./l/ 

T=Ne, 21(T)ET;Ti'=2 (1.3) 

Here 1 (T) is the secondinvariant of the stress tensor, N = N(E) is the coefficient of 
proportionality of the deviators, obtained from the second relation of (1.3),s = (E')) is the 
strain rate tensor which is a deviator by virtue of the first equation of (1.2), 

&ij=VIUj + Vj,i 

V' are the contravariant differentiation operators inthe space /9/. 
Let us write for(l.?).(1.3)on S (2 = 0)the condition of impermeability and define the 

tangential stress vector 

us = 0 (1.4) 

T= = f” (3’. 2, 1) (a = 1, 2) (1.5) 

We can replace (1.5) by the cbndition/lo/(y is the coefficient of friction) 

53 = min (1, v (pf-? - +))u / u / -l 

This condition may hold when the normal stress on S is compressive. It means that the 
slippage along S takes place either in the dry friction mode (here! 't"l< l)or f7”l = 1 i.e. it 

attains its maximum value allowed by the condition of plasticity. When v are not very small 
and conditions (1.1) hold, the condition represents a special case of (1.5), provided that 
the direction of the velocity u on S is known. 

2, Assumption (1.1) leads to the appearance of a small parameter f* in (1.2). When f = 
O(1.2)becomes an equation for an ideal fluid, which agrees with what was said in Sect.1. We 
shall denote such a velocity field satisfying condition (1.4) by v, and the corresponding 
pressure field by q. Then, using the known field v we can easily find T from (1.3). After 
this we can find the correction to the velocity from (1.2) by linearizing them about v; the 
correction to the velocity and pressure will be of the order of f*. 

Let us write the total fields u and p in the form 

u = v - f%,, p = q y j*ql (2.1) 

Then, in accordance with what was said above, we have the following relations from (i.2) 
for steady state flow in an irrotational field T: 

di\- v = 0, grad (ql $ vvl) - [v x rot v,l = div T (2.2) 

The Eqs.(2.2) for the corrections are linear, and the quantity div T found on v plays the 
part of the mass forces. Here we have the situation studied in /3/ for the specific cases. 
It is clear that the stream lines of the field v arc the characteristics of System (2.2). 

Therefore, we can specify for (2.2) on the surface S only condition (1.4), but not (1.5). The 
procedure shown can be used to find the corrections of order p and higher. We can construct 
in this manner the outer asymptotic expansion for the solution /ll/ which does not satisfy 
condition (1.5). To satisfy (1.5)) we must construct the inner asymptotic expansion near St 
i.e. the boundary layer (BL). 

3. In deriving the equations we shall use the results of /3/ to formulate the basic 
hypotheses. We shall write the required fields u and p in the form 

u=v+f--,p=qips (3.1) 

Here v and q are the fields in the ideal fluid corresponding to f = 0 and a~, s are the 
corrections. 
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The representation (3.1) presupposes the slippage of the umdi~m particles along the 
surface S, and means that the fields v and q provide the main contribution towards the 
quantities sought. We see from relations (3.1) the deviation from the classical formulation 
of the problem of a viscous fluid where the correction for V is of order v. The difference 

is due to the fact that there is no slippage in the viscous model and no constraints are 
imposed on the magnitude of the tangential stress. In the case in question the slippage is 

allowed, since the tangential stresses are restricted by condition (1.3) and relation (1.1) 
holds by definition. 

In accordance with what was said in Sect.2, we shall assume that w,s, T very rapidly 

near S, in the sense that their derivatives in 9 are large. We shall write, as in /3/, 

Zs = jz, H' = w (z', 9, I, t), s = s (9, 9, z, t), T = T (9, 9, z, t) (3.2) 

Let us denote by eij the deformation rates calculated over the field v according to (1.3). 
Let us also assume that they are not all zero. This clearly does not imply that v provides 
the main contribution towards E. The hypothesis just suggested means that we consider only 
those v, such that particles moving near the surface S are deformed. In other words, we 

assume that energy is dissipated near S. Thus we eliminate from our discussion the problems 
in which a flow zone with constant velocities exists around S, e.g. the selfsimilar problem 
on skew shock /12/ which has no boundary layer. Henceforth, we shall assume that the fields 
v and q are known. 

We also note that the following condition follows from (1.4) and (3.1): 

f&3=0 (z=O) (3.3) 

and we have conditions (1.5) for T. 

4. Using the assumptions of Sect.3, remembering that v and q satisfy Eqs.Cl.2) at f = 0 
and neglecting terms of order higher than f', we can eliminate from(1.2), (1.3) some of the 
unknowns and obtain the following BL equations near S: 

u',t v T LJjT6u.s f u~P~v"-zL(Pu:P,=TFJ, (4.1) 

u.,,= A 2c3==?$T3=(l -13hfi3)-‘* (o,B= 1,2) (4.2) 

The index following the comma denotes differentiation with respect to the corresponding 
variable, 7, is the covariant differentiation operator on s 191, ,.,a are the deformation rates 
calculated over the field v and taken on S. The functions y and 3 also depend only on r1,z2 
and are expressed in terms of u 

CF E. rfiri., 2$* =egae,R - e,le$ (CL. p= 1,2) (C3) 

All characteristics of the field Y are taken with 13 = 0. 
Projecting (1.1) onto the normal to S we obtain, in addition to (4.1),(4.2), 

(-'p - F),* = 0 

al 
The above relation means that the total normal stress u 33is constant near the surface S 

ong a fixed normal, the same as inthe outer expansion described in Sect.2. 
We take (1.5) as the boundary conditions for(4.1). (4.2)at z = 0 , and at z = =we have 

LC~ = 0 (a = 1,2) (4.4) 

Relation (4.4) represents the condition for matching the solution in the BL to the 
outer expansion. If the condition is satisfied, then the quantity T from the BL tends clearly, 
as z--t 35 tothe quantity T fronithe outer expansion defined over v in accordancewithwhatwas said in 
Sect.2. Nextwe consider a steady flow, using the stream lines of the field v as the coordinate 
lines 2'. Equations (4.2) remain unchanged, and (4.1) take the form 

v'Yru"-L w~~~vo-Z~u.p,=T~,* (4.5) 
We see from (4.2) and (4.5) that the surfaces .r2 = const represent the characteristics of 

this system, and the variable r* appears only as a parameter. In other words, we can study 
the flow inthe BL along every stream line of the field v independently of each other. It is 
this factor that distinguishes Eqs.(4.2) and (4.5) from the corresponding equations of 
hydrodynamics. The circumstance mentioned satisfies the problem and makes the results of the 
plane and axisymmetric solutions given in /3/ and below, more representative. 

If the field v is irrotational, then 

ez?= vlbp (4.6) 

Here bp is a component of the tensor consisting of the coefficients of the second 
quadratic form of S. 

Let S be a cylinder or a surface of revolution, and the flows v and FV be plane or axi- 
symmetric, let z1 denote the arc length along the direction of the cylinder or meridian 
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measured from the stagnation point, and, in addition, let ~,a=('). Then, writing v' = L',& =: 
K, 78X = 7 we obtain, from (4.5),(4.2), (4.6), 

(vw),~ - acp~,, = 7,,, w,, - 2vlR = 29 (1 - 7*)-'Es7 (4.7) 

Here R is the radius of curvature of the directrix or meridian. In accordance with (4.3) 
we have cf = Cp = v,rforthe plane problem, and cp = us + B-'B,A qpl = $ - B-'B,lc.~v for the axi- 
symmetric problem. Here B is the coefficient of the first quadratic form of S taken in the 
form ($s)s = (&r1)2 + B (dz~)". 

Eqs.(4.7) are analogous to the equations studied in /3/. 
Let us introduce the notation 

u. = L’W 

F (7) = '2r (1 - 7*)-','*, 0 (r) = (3)-* (W - (3)J) 

k (I) =r 2u(vR)-' 

(4.8) 

System (4.7) in the new variables takes the form 

U*Y = F 0) + k (s), u., = t," + YO (r) u," 

and we shall study this system below. 

(4.9) 

In the case of a plane flow within a right angle whose side x7 = 0 is smooth and x3= 0 
is rough, we use as L' the well-known expression for an ideal fluid /13/ to reduce system 
(4.9) to the following non-linear parabolic equation: 

T,yy2=2(1-T*)-'/:T,x 

Symmetry considerations and conditions (1.5! and (4.4) enable us to formulate the boundary 
value problem fcr system (4.8) in the form 

u = 0 (1 = O), r = Z@ (r) (y = 0). 1L = 0 (y = bo) (4.10) 

We also note that for the BL around a cone with a flow of ahardening plastic medium with 
a shock wave attached to the tip of the cone (the medium is incompressible behind the shock), 
(4.9) yields the equations which have been obtained and studied in /3/. 

5. The BL equations (4.1). (4.2) andtheir specialcase(4.9) with the boundary conditions 
(4.10) were obtained assuming that such a layer exists. The author has no proof of this 
assumption. Below we give Farticular solutions of problem (4.91 and (4.10) which show that, 
at least in the cases studied, the assumption does not lead to a contradicticn. The solutions 
themselves are interesting, and give, in addition, an idea of the possible thickness of the 
EL and the manner in which the solutions decrease. Some solutions of (4.9) can be found 
using group-theory methods of analyzing differential Eqs./8/. We find that if o (r) and X- (r) 
satisfy the conditions 

EO.X + @U_l = 0. (Eli,,),, = EWk,,. E, z Z A fir (5.1) 

(= and 8 are arbitrary constants), then Eqs.(4.9) admt of the group. 
Having found-the group invariants, we can find excact solutions of the non-linear system 

(4.9). Such solutions are given in /3/ foro = conSt and k = 0. Let us consider the case 

O=T.I. k=O (3.2) 

Such w and k occu in plane flows past wedges and in axisymmetric flows past cones. For 
the wedges with half-angle ?.a we have, in accordance with (4.8) and the well-known expressions 
for the velocities of an ideal fluid flowing past a wedge /13/, 

Similarly, for a cone with half-angle hn we have 

Here the quantities i. and p are connected by the relation (Pa1 is the associated Legendre 

function of the first kind) 

e_, (eos X.x) = 0 (5.5) 

In the case of cones with an acute angle &<I), the approximate solution (5.5) will be 
2~ =(nh)*.~hen h = I/? (axisymmetric flow impinging on a plane), (5.5) yields p = 1. 

Using the fact that expressions (5.2) satisfy the conditions for the existence of the groilp 
(5.11, we shall seek, in accordance with /6/, the partly invariant soluiions of system 14.9) 
in the form (b is an arbitrary constant) 
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7 = 7 (t), u = 243 (t), t = T’l’ (y + h-y (5.6) 

From (4.9) we obtain for r and 9 the following system in ordinary derivatives: 

7., + (2v + 1) tT (1 - 7*)-9: = 812, 8~ = 27 (1 - +)-‘1, (5.5) 

and, inaccordancewith (1.5),(4.4) and (S.lO),we must set the following conditions for system 
(5.;): 

7 (to) = r. > 0, 8 lm) = 0 

We note that the selfsimilar problem of determining the field about an expanding and 
rotating cylinder studied in /3/, reduces to (j.i), (5.8). 

N.K. Balabaev coxununicated to the author the proof of the fact that when v>--'I,, the 
problem(5.7),(5.8)has a unique solution. It was also shown that I and 6 tend monotonically to 
zero, decreasing and increasing respectively (s>O, e<O).He also solved the problem for v=O, 
ait and different TV. He found that when t varies from zero to unity, 7 decreases by at 
least one order of magnitude. 

Knowing that a solution of the problem(5.7),(5.8),tending to zero at infinity, exists, we 
can obtain, as in /3/, its asymptotic expression for large t 

We have analogous results for other o and k satisfying conditions (5.1). What was said 
above, leads us to believe that the problem(4.9). (4.10)has solutions of the BL-type when w>O. 

6. The results of Sect.5 make possible the study of the BL appearing in flows past 
wedges and cones. Let us consider the plane and the axisymmetric case of a flow impinging 
on a plane (the half-angle of the wedge or cone is x! 2). Formulas (5.3) and (5.4) yield 
here V= 0 and v='/* respectively. 

The change in T in the BL can be conveniently assessed by studying the distribution of 
the level lines of this function. In the (zl; t: plane we obtain from(5.3), (5.4). (5.6)the following 
expression for the level lines *= CIIIIC~: 

z+ b (,l)_@V-l) = (Ev + 2)C"'f (6.1) 

When b>O, they are monotonically increasing functions z(z*) with the common vertical 
asymptote tl= 0 and horizontal asymptotes L = ~(EvT~J-'J. When *=O, the 2 axis represents 
such an asymptote. This means that the function 't is close, at the boundary of the region 
in question, to a constant, and this can be dealt with by putting, in particular, f#)= 1. 
It tends to zero near z'= 0 with all its derivatives 

r = ***lerp (_ !/,(*l)-=vT') ) 

(which follows from (5.6) and (6.1)). Relation (5.9) and the form of the contour line; ?(z,.zI 
(6.1)imply that the conditions hold at infinity. 

Thus the solution of(E.i).(5.6)satisfies the BL equations and its boundary values are close 
to the required conditions (4.10). We can also say that this solution "corrects" the boundary 
condition in the neighbourhood of the staqnation point I'= I= 0. Condition (1.5) is imposed 
where slippage occurs, tutitisdifficult to speak of slippage near the stagnationpoint.Judging 
from the zero approximation to V, a particle belonging to the medium present at some instant 
at the point zl= I= 0. moves away from it by a finite distance over an infinite period. 
Therefore the solution of(E.7). (5.8)obtained describes the phenomenon correctly. 

The figure shows the relation *(I]. ~1 calculated by N.K. Balabaev. On the left we have 
the contour lines of 'I (the solid lines correspond to v=I:~ and the dashed lines to V = (I), 
and on the right we have the relations *= ~(f,iwhere f,= (8~+2)-'~r,obtainedbynumericalintegra- 
tion of the problem (5.ij,(5.8) for two values of 'I~. The value of c at some contour line is found as 
follows. The magnitude of the ordinate z of the horizontal asymptote of the contour line in 
question is used to obtain, according to (6.1), 11 = z. After this the curve 7 = his used 
to find the corresponding value of T. 

: _--- ,* 
The existence of a horizontal asymptote to 

the contour line T means that in the flow in 
., / \\ I question the BL has finite thickness, unlike a 

// \\ 
\\ i 

Hi& 

viscous fluid. 

0.5 I The figure shows that when 1, varies from 

I NC ---- 
0.5 ‘\ 

\ zero to 1.5, the quantity T decreases more than 

’ // 1 \ \ tenfold. If we take, as the thickness of the BL, 
/ \ 

0 
0 \ 

40 O 
'+ 

the distance at which such decrease occurs, then, 

f0 0.5 I taking into account (3.2), we can say that the 
thickness of the BL is approximately equal to f. 
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Similar results are obtained in the courseofthe study of BL on wedges and cones. They 
cease to be valid however at considerable distances from the tip. This is due to the fact 
that the deformations in the seroth appxoximation decrease rapidly, and the condition that 
they must not be too small adopted in Sect.3, no longer holds. 

The author thanks N.V. Evolinskii, N.K. Balabaev and L.M. Markhashov for advice and help. 
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